
THE RHIC/AGS ONLINE MODEL ENVIRONMENT:
DESIGN AND OVERVIEW ∗

T. Satogata† , K. Brown, F. Pilat, A. Alai Tafti, S. Tepikian, J. van Zeijts
BNL, Upton, NY, USA 11973

Abstract

An integrated online modeling environment is currently un-
der development for use by AGS and RHIC physicists and
commissioners. This environment combines the modeling
efforts of both groups in a CDEV[1] client-server design,
providing access to expected machine optics and physics
parameters based on live and design machine settings. An
abstract modeling interface has been designed as a set of
adapters[2] around core computational modeling engines
such as MAD and UAL/Teapot++[3]. This approach al-
lows us to leverage existing survey, lattice, and magnet in-
frastructure, as well as easily incorporate new model engine
developments. This paper describes the architecture of the
RHIC/AGS modeling environment, including the applica-
tion interface through CDEV and general tools for graph-
ical interaction with the model using Tcl/Tk. Separate pa-
pers at this conference address the specifics of implement-
ation and modeling experience for AGS and RHIC.

1 MOTIVATION AND SCOPE
Over the past five years, an infrastructure has been de-
veloped in the RHIC project that integrates delivered
magnet measurements, offline long-term particle tracking,
and survey of installed RHIC components. Both design
and `as built' optics models of RHIC are routinely pro-
duced. Accelerator applications being developed for com-
missioning require a consistent optics model framework
that builds upon this effort, maintaining consistency from
design through construction and installation to commis-
sioning. However, the tracking and optics programs used
for design and magnet production feedback could not be
easily adapted for use by RHIC controls applications.

We have developed an online modeling environment
used by various RHIC correction applications (e.g. orbit,
tune, chromaticity, coupling) to access design, as-built, and
live optics data generated by optics model engines. By us-
ing a client-server model and an abstracted modeling inter-
face layer, this becomes a generic modeling environment
that can also be used for AGS and AGS/Booster applic-
ation modeling and calculation. Multiple model engines
with different interfaces and implementations are suppor-
ted by a common CDEV interface for application use.

The online model design discussed here is not inten-
ded to supply a full control-system simulation of an op-
erational accelerator control system (cf. Fermilab's Open
Access Server). At this time there are no plans to imple-
ment such a simulation service for RHIC.

∗Work supported under the auspices of the U.S. Department of Energy
† Email: satogata@bnl.gov

1. Read/write flat machine lattice descriptions
2. Read/set individual magnet parameters:

• Strength (including combined function magnets)
• Offset from design (2D)
• Multipole corrections and errors
• Survey and layout

3. Read/Set boundary conditions

• Single-particle initial coords, energy, species
• Bunch initial conditions (groups of particles)
• Beamline initial lattice functions

4. Calculate optics to reasonable order:

• Tunes (Qx, Qy, QS)
• Transition energy,γT

• Lattice functions (β, α, phases,η,. . .)
• 6D orbit, football transfer matrices
• First-turn and closed orbits

. . . Future development, specialty CMEs

• Perform constrained model-based corrections
• Produce Taylor Expansions, maps, DA forms
• Perform single-particle and bunch tracking

Table 1: A summary of CME computational capabilities in
the RHIC/AGS Online Model Environment.

2 COMPUTATIONAL MODEL ENGINES
A computational modeling engine (CME) is an acceler-
ator simulation that provides an interactive interface (usu-
ally an interpreted script) to a small set of modeling cap-
abilities. These CMEs are the core of any accelerator
modeling, online or offline — they are the algorithmic
guts and interfaces that transform lattice and beam defin-
itions into beam physics output. UAL/Teapot++is the
CME currently in use for RHIC design and commissioning.
Other commonly-used CMEs include Teapot, TRANS-
PORT, SYNCH, COSY, and MAD, and several locally-
modified versions of MAD are also used and maintained
by AGS beam physicists [4].

Online modeling requires interactive, real-time CMEs.
Most popular CMEs are used by accelerator designers
and modelers in a batch job mode, driven by command
scripts written in highly idiomatic command languages,
and parsed and interpreted line by line. Though the script
interface can also be used interactively, optics output is
usually only output to files, an inefficient path for applica-
tion interaction with a CME. The online modeling architec-
ture described here abstracts the common features of many
CMEs into a simple network command interface that can

0-7803-5573-3/99/$10.00@1999 IEEE. 2728

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

be used by accelerator applications on distributed controls
consoles.

CMEs load accelerator lattice definitions using another
idiomatic language, though there is much more common-
ality here as many accelerator codes use the the MAD in-
put language, Standard Machine Format (SMF). However,
SMF is cumbersome or deficient in some areas required
to model a fully hierarchical design model of an acceler-
ator, modified by `as-built' constraints. Recent collabor-
ative efforts between several labs have made progress to-
wards developing SXF, a Standard Exchange Format, to su-
persede SMF for collaborative LHC design work [5]. The
RHIC/AGS modeling environment provides an abstract in-
terface to lattice and strength table read/write, allowing
adaptors to be easily written that integrate local lattice
databases and definitions with various CMEs in the online
model.

Functional requirements for CMEs are derived from ap-
plication and commissioning priorities, as well as com-
monality of existing CME functionalities. Experience has
shown that the most common requests to an online CME
during commissioning are those shown in Table 1. In par-
ticular, one must be able to change magnet strengths and
offsets, and calculate full 6D linear optics parameters for
use in control application analysis and correction. Many
CMEs are capable of these calculations with very similar
interfaces, though they vary wildly in their implementa-
tions and compromises between speed and completeness.

3 SERVER ARCHITECTURE

The client-server architecture for RHIC/AGS online mod-
eling is shown in Figure 1. Client applications interact
with the model via CDEV calls, as described in Section 4.
Each model server for a supported CME is compiled from
several C++classes. The CDEV modeling interface is
provided by a CDEV Model Server class that is derived
from the CDEV Generic Server[6]; derived servers may ex-
tend the interface to provide extended access to underlying
CME capabilities and data structures.

3.1 Generic model data classes

The model server uses a small set of generic model data
classes to provide the data interface between optics and
magnet settings in the CME and the model server class.
This supports the CME capabilities in Table 1, and in-
cludes arrays of lattice functions at user-specified mon-
itor elements, as well as matrices for higher-order optics.
All model data follows Teapot unit and coordinate conven-
tions, for initial implementation convenience. However,
the current strongly-typed model data class is not dynamic-
ally extensible to accommodate different CME data struc-
tures, and this data class will be reimplemented as a generic
cdevData container extension in the near future.

CME Adapter

CDEV Model Server

read/write

Control System

Live Magnet Strengths

lattice/strengths

transactions

CME

Lattice Repository
Optics / Survey Databases

Model Data

CME Lattice Adapters

Client Applications

CDEV

Figure 1: The RHIC/AGS online model architecture. Each
running model server is a separate unix process, binding
the server interface to an instance of a CME.

3.2 CME Adapters

Each CME must have an adapter class that translates gen-
eric method calls from the server to CME-specific function
calls or implementations. Writing such an adapter is the
major effort required to integrate a new CME into this en-
vironment. All CME adapters are derived from a parent
interface class; this general interface is then used by the
model server when making requests, and the model data
classes are used to retrieve optics and lattice output.

CME translation and interface becomes complicated
when the CME only has a parsed scripting interface that
is not easily bindable (e.g. AGS/MAD, or MAD with no
source libraries). In these cases the CME adapter must fork
a separate process instance of the CME and interact with
it via file descriptors, generating command text and pars-
ing output files as requests are made. Other CMEs (such
as UAL/Teapot++) that have direct C++object interfaces
may be used directly in the CME via shared libraries that
are loaded at run-time.

3.3 Lattice adapters

Lattice adapters provide translations from one lattice rep-
resentation to another within a given environment, such as
a control system or accelerator design project. They separ-
ately implement read/write of accelerator lattices and sur-
vey (slowly-changing or static layout), and magnet strength
(dynamic control) information. In particular, they can also
implement methods to load live accelerator magnet settings
from the control system into the model, allowing interact-
ive online comparisons between live and expected machine
optics.

2729

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

1. Names and Strengths:

• SiteWideNames
• ModelStrength: in physics units

2. Model Output:

• LatticeFunctions
• Orbit
• muX, muY: tunes for circular lattices
• chromX, chromY: chromaticities
• gammatransition

3. Response Matrices:

• SteeringMatrix: for beamline steering
• ClosedOrbitMatrix: for closed orbit correction
• OscillationMatrix: for coherent oscillation cor-

rection
• MatchingMatrix: for betatron matching
• TuneMatrix: for tune correction
• GammaTransitionMatrix: forγt correction

Table 2: Model keywords for requests to the CME server

4 CDEV CLIENT INTERFACE

The client side of the CME server consists of several CDEV
`device' classes, and specific attributes for each class. The
attributes for a model device are summarized in Table 2.
The message interface allows access to the model by using
`get' and `set' verbs, or notification on-change by using the
`monitorOn' verb, where callbacks will be triggered when
the underlying data changes. This notification allows mul-
tiple clients to stay synchronized when magnet parameters
or injection parameters are changed within the model.

For retrieving response matrices we have followed the
naming conventions used in the `BeamOptics' code [7];
in Table 2 we list the requests for several types of these
matrices. Each request takes appropriate lists of magnet
names and position pickups, which are then sent as tagged
entries in cdevData interface to the model. Optionally, the
outgoing context data specifies an interest in a subset of the
default return data; for instance, this allows a lattice func-
tion call to only returnβx andαx instead of the full set.

5 APPLICATION EXAMPLES

Currently several applications at RHIC use the interface
described here to access the UAL/Teapot++CME. They
include the RHIC orbit correction application, the RHIC
injection application[8], the ATR emittance measurement
application, the RHIC Ramp Editor[9], and several Tcl/Tk
scripts that are used for lattice function visualization, and
what-if scenarios. As an example we show in fig. 2 the
interface to the RHIC injection application, displaying a
CME-derived orbit.

Figure 2: The RHIC injection application.

6 ACKNOWLEDGEMENTS

Our thanks to Nikolay Malitsky and Dick Talman for their
development of the UAL/Teapot++modeling environment
that inspired this work. Future developments of this envir-
onment may extend to restructuring the client-server model
around CORBA, providing a more flexible and dynamic
binding between modeling components and adapters.

7 REFERENCES

[1] J. Chen, et al., “CDEV: An Object-Oriented Class Library
for Developing Device Control Applications”, Proceedings
of ICALEPCS 1995.

[2] E. Gamma, et al.,Design Patterns.(Addison-Wesley, Read-
ing, Massachusetts, 1995)

[3] N. Malitsky and R. Talman, “The UAL Infrastructure for Ac-
celerator Optimization and Correction”, these proceedings.

[4] K. Brown, et al., “The RHIC/AGS Online Model Environ-
ments: Experiences and Design for AGS Modeling”, these
proceedings.

[5] F. Pilat, et al., “The application of the SXF lattice descrip-
tion and the UAL software environment to the analysis of the
LHC”, these proceedings.

[6] W. Akers, “An Object-Oriented Framework for Client/Server
Applications”, Proceedings of ICALEPCS 1997.

[7] B. Autin, “BeamOptics: A Program For Analytical Beam Op-
tics”, CERN publication 98-06.

[8] W. Fischer, J.W. Glenn, W.W. Mackay, V. Ptitsin, T.G. Robin-
son, N. Tsoupas, “The RHIC Injection System”, these pro-
ceedings.

[9] J. Kewisch, J. van Zeijts, S. Peggs, T. Satogata, “Ramp Man-
agement in RHIC”, these proceedings.

2730

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

